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In modelling complex systems as real diffusion processes it is common to analyse its
diffusive regime through the study of approximating sequences of random walks. For
the partial sums Sn = ξ1 + ξ2 + . . . + ξn one considers the approximating sequence of
processes X (n)(t) = an(S[kn t] − bn). Then, under sufficient smoothness requirements
we have the convergence to the desired diffusion, X (n)(t) → X (t). A key assumption
usually presumed is the finiteness of the second moment, and, hence the validity of
the Central Limit Theorem. Under anomalous diffusive regime the asymptotic behavior
of Sn may well be non-Gaussian and n−1 E(S2

n ) → ∞. Such random walks have been
referred by physicists as Lévy motions or Lévy flights. In this work, we introduce an
alternative notion to classify these regimes, the diffusion index γX . For some γ 0

X properly
chosen let γX = inf{γ : 0 < γ ≤ γ 0

X , lim supt→∞ t−1 E |X (t)|1/γ < ∞}. Relationship
between γX , the infinitesimal diffusion coefficients and the diffusion constant will be
explored. Illustrative examples as well as estimates, based on extreme order statistics,
for γX will also be presented.

KEY WORDS: Lévy motions, anomalous diffusion.

1. INTRODUCTION

Random motions of particles in space are generally modelled as diffusions. Clas-
sical or normal diffusion occurs when the mean square displacement during a
time interval becomes, for sufficient long intervals, a linear function of it. From
a mathematical point of view, this phenomenon is a consequence of the Central
Limit Theorem which is concerned with the statistical properties of the cumulative
displacements arising from a very large number of independent displacements. By
taking into account the independence of the increments, in classical Probability
Theory, a diffusion process can be viewed as a path continuous Markov process
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{X (t) : t ≥ 0} with local diffusion characterized by its infinitesimal parameters:
for every x, t > 0 and ε > 0,

lim
h↓0

1

h
P (|X (t + h) − X (t)| > ε |X (t) = x ) = 0,

lim
h↓0

1

h
E {X (t + h) − X (t) |X (t) = x } = µX (x, t),

lim
h↓0

1

h
E

{
(X (t + h) − X (t))2 |X (t) = x

} = σ 2
X (x, t).

(1)

The functions µX (·) and σ 2
X (·) are termed, respectively, drift coefficient (infinites-

imal mean) and diffusion coefficient (infinitesimal variance). The basic and sim-
plest example is the Brownian motion {B(t) : t ≥ 0} where µB(x, t) = 0 and
σ 2(x, t) = 1.

On the other hand, in applied stochastic modelling it is common to anal-
yse diffusion processes through the study of approximating sequences of random
walks. One considers Sn = ξ1 + ξ2 + · · · + ξn where ξ1, ξ2, . . . are i.i.d. (indepen-
dent and identically distributed) random variables and defines an approximating
sequence of processes

X (n)(t) = an (S[kn t] − bn).

Where bn is a centering constant, an performs a scaling of the state variable, kn per-
forms the required time scaling and [knt] denotes the largest integer not exceeding
knt . Then, under sufficient smoothness requirements we have the approximation
to the desired diffusion, X (n)(t) → X (t). For example, the Donsker’s Functional
Central Limit Theorem assures that if ξ j ’s have zero mean and finite variance
E(ξ 2

j ) = σ 2 > 0 then

X (n)(t) = 1

σ
√

n
{S[nt] + (nt − [nt])ξ[nt]+1} → B(t). (2)

A key assumption necessary for the convergence (2) is the finiteness of the
second moment, and, hence the validity of the Central Limit Theorem. In which

case one should expect that 0 < lim
t→∞

E(X2(t))
2t < ∞, leading to a normal diffusive

regime. In anomalous diffusion, this linearity breaks down to yields to a form
of diffusion either faster or slower than normal. Such anomalous diffusion and
their corresponding approximating random walks have been referred by physi-
cists as Lévy motions or Lévy flights. Their applicability have appeared in geo-
physics, hydrology, turbulence, economics and physics, particularly, in connection
to the so-called renormalization of group theory (RGT) and critical phenomena
or anomalous diffusions. This led physicists to make use of the following limit to
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classify distinct diffuse regimes :

DX = lim
t→∞

E(X2(t))

2t
. (3)

For such concepts and applications see, for example, (4,5,7,8−9) and references
there in. Since for the Brownian motion with variance σ 2 the diffusion constant is
DB = σ 2/2, the following classification is used:

DX = 0 ⇒ subdiffusion

0 < DX < ∞ ⇒ normal diffusion (4)

DX = ∞ ⇒ superdiffusion.

In this work, as in the diffusion constant DX , we analyse the long-range diffusion
behavior. In Sec 2 we introduce a notion of diffusion index γX , based on the
analysis of

lim inf
t→∞

E(|X (t)|1/γ )

t
and lim sup

t→∞
E(|X (t)|1/γ )

t

where γ > 0. One shows, among other results, that γX = γ∗, if for
some γ∗ > 0 we have 0 < lim

t→∞ t−1 E(|X (t)|1/γ∗ < ∞. Relationship between

γX , the infinitesimal coefficients and the diffusion constant will also be
explored.

Our Proposition 5 shows that under superdiffusive regime and for Lévy
processes the index γX constitute a refinement of the diffusion constant DX .
Since stable Lévy distributions are limits in law of stabilized sums Sn−bn

nγX
,

such refinement along with the knowledge of the index γX will allow us to
study anomalous diffusions as limits of properly scaled transformations of ran-
dom walks. And this constitutes more accurate approximations than the or-
dinary scaled random walks that are generally used. (3,11,13) By making el-
ementary operations on the process the results from Proposition 2 suggest
possible procedures to analyse decomposition, superposition or relaxation of
diffusions.

In Sec 4 we further explore the role played by stable distributions in diffusion
analysis. It will be seen that 1

n E
(
S2

n

) → ∞ along with its tail behavior will lead us
to an estimate of the index γX . Some illustrative examples are included in Sec 3,
particularly, Example 2 shows that DX does not avoid misleading diffusions caused
by the drift and that this can be bypassed by considering centered processes.
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2. DIFFUSION INDEX

Assume {X (t) : t ≥ 0} is a real centered stochastic process, that is, a real
valuated process with either E{X (t)} = 0 or satisfying the symmetry

P(X (t) ≤ x) = P(X (t) ≥ −x), ∀x, ∀t.

Instead of considering local diffusion characteristics as in (1) we explore the
long-range properties as in (3).

Definition 1. For a centered stochastic process X (·) let

γ 0
X = sup{γ : γ > 0, lim inf

t→∞
E |X (t)|1/γ

t
> 0}, (5)

γ 0
X = 0 if lim inf

t→∞
E |X (t)|1/γ

t
= 0, ∀γ > 0.

And define the diffusion index γX by

γX = inf{γ : 0 < γ ≤ γ 0
X , lim sup

t→∞
E |X (t)|1/γ

t
< ∞} (6)

γX = 0 if γ 0
X = 0,

γX = ∞ if lim inf
t→∞

E |X (t)|1/γ

t
= ∞, ∀γ > 0.

Proposition 1. If 0 < γX < ∞ then γX = γ 0
X ,

lim sup
t→∞

E |X (t)|1/γ

t
= ∞ for 0 < γ < γX (7)

and

lim inf
t→∞

E |X (t)|1/γ

t
= 0 for γ > γX . (8)

Proof. Directly from (6) we obtain (7). To prove (8) we make use of Liapounov’s
inequality : for γ > γ1 > 0

(E |X (t)|1/γ )γ ≤ (E |X (t)|1/γ1 )γ1

and

tγ−γ1

(
E |X (t)|1/γ

t

)γ

≤
(

E |X (t)|1/γ1

t

)γ1

(9)
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If for some γ > γX , we have lim inf t→∞
E |X (t)|1/γ

t > 0 then, by (9), we have

lim sup
t→∞

E |X (t)|1/γ1

t
= ∞ , 0 < γ1 < γ.

From (6) we have γX ≥ γ , a contradiction. Thus (8) follows and by (5) we have
γ 0

X ≤ γX . Using again (6) we have γX = γ 0
X . �

Corollary 1. Suppose for some 0 < γ∗ < ∞ we have

0 < lim inf
t→∞

E |X (t)|1/γ∗

t
≤ lim sup

t→∞
E |X (t)|1/γ∗

t
< ∞. (10)

Then γX = γ∗.

This allows an alternative definition for the diffusion index.

Definition 2. If (10) is satisfied with 0 < γ∗ < ∞ define γX = γ∗ . If no such γ∗
exists define

γX = 0 if lim inf
t→∞

E |X (t)|1/γ

t
= 0 , ∀γ > 0 (11)

and

γX = ∞ if lim sup
t→∞

E |X (t)|1/γ

t
= ∞ , ∀γ > 0. (12)

Proposition 2. Let X (·) and Y (·) be centered stochastic processes. If a �= 0 and
b > 0 are constants, then

γ|X | = γX , γaX = γX , γ|X |b = bγX and γX+Y ≤ max{γX , γY }.

Proof. The equalities are immediate. For the inequality consider the following
refinement of Minkowski inequality,

E |X + Y |r ≤ Cr (E |X |r + E |Y |r ) , r ≥ 0, (13)

where Cr = 1 if 0 ≤ r ≤ 1 and Cr = 2r−1 if r > 1.
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Clearly, if max{γX , γY } = 0 then by (11) and (13) we have γ 0
X+Y = γX+Y = 0.

Assume γ > max{γX , γY } > 0. Then by Proposition 1

lim inf
t→∞

E |X (t)|1/γ

t
= lim inf

t→∞
E |Y (t)|1/γ

t
= 0.

From (13) we conclude that

lim inf
t→∞

E |X (t) + Y (t)|1/γ

t
= 0 , γ > max{γX , γY }.

From (5) we have γ 0
X+Y ≤ max{γX , γY } and from (6) we have

γX+Y ≤ max{γX , γY }. �

Next, we compare the index γX with the diffusion coefficient σ 2
X (x, t) and the

diffusion constant DX . We say that a process X (·) has stationary and independent
increments if

(X (t + h)) − X (t))
D= (X (s + h) − X (s)),

and for 0 ≤ t0 < t1 < · · · < tk the random variables X (t1) − X (t0), . . . , X (tk) −
X (tk−1) are independent (

D= stands for same distribution).

Proposition 3. Let X (·) be a zero-mean stochastic process with stationary and
independent increments. Then, if 0 < σ 2

X (x, t) < ∞ we have γX = 1/2.

Proof. By the stationarity and independence of the increments we have

E{(X (t + h) − X (t))2|X (t) = x} = E(X2(h))

and from (1)

σ 2
X (x, t) = lim

h↓0

E{X2(h)}
h

= a, 0 < a < ∞.

Also, for n ≥ 1 and h > 0

E(X2(nh)) = E

{(
n∑

j=1

[X ( jh) − X (( j − 1)h)]

)2}
= nE(X2(h)).

Now let hn ↓ 0 with nhn → ∞ then

lim
t→∞

E(X2(t))

t
= lim

n→∞
E(X2(nhn))

nhn
= a.

Since 0 < a < ∞ we have (10) satisfied with γ∗ = 1/2. By Corollary 1 the result
follows. �
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Similarly, the Liapounov’s inequality (10) also gives:

Proposition 4. If the diffusion constant 0 < DX < ∞ then γX = 1/2.

The role of diffusion index can be better illustrated by the Lévy motions that
constitute a subclass of processes with stationary and independent increments. Its
increments possess distributions that allow a great variability and that, unlike the
Gaussian case, do not possess finite second moments.

We say that Sα,β , 0 < α ≤ 2 and β > 0, is a symmetric stable distribution
with stability index α and scaling parameter β if the corresponding characteristic
function is given by

φSα,β
(θ ) = E(eiθ Sα,β ) = exp{−βα|θ |α}.

Note that if α = 2 we have the Gaussian case, N (0, 2β2). For a comprehensive
survey of properties of stable laws see, for example. (1,12)

Definition 3. A stochastic process Lα,σ = {L(t) : t ≥ 0} is said to be a symmetric
Lévy stable process if :

(i) L(0) = 0 a.s. (almost surely).

(ii) L(·) has stationary and independent increments.

(iii) For 0 ≤ s < t , L(t) − L(s)
D= Sα,σ (t−s)1/α for some 0 < α ≤ 2 and σ > 0.

Remark 1. (a) For α = 2 we have the Brownian motion with variance σ 2/2. Since
L(1) is Gaussian we have E |L(1)|1/γ < ∞, ∀γ > 0 and from (1) and (3) we have
σ 2

L (x, t) = σ 2 and DL = σ 2/2.

(b) Under scaling of time and space the Lévy stable processes are invariant
in distribution. Also, they are self-similar processes satisfying,

L(at) − L(as)
D= a1/α[L(t) − L(s)] , a > 0, s ≥ 0, t ≥ 0. (14)

(c) For 0 < α < 2 we have α = κL , the moment index,

κL = sup{κ : κ > 0, E |L(1)|κ < ∞} (15)

(see, (1)).

Proposition 5. For the Lévy stable process L = Lα,σ , if α = 2 then

σ 2
L (x, t) = σ 2, DL = σ 2

2
and γL = 1

2
.
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And, if 0 < α < 2 (superdiffusion) we have

σ 2
L (x, t) = DL = ∞ and γL = 1

α
>

1

2
.

Proof. Let γ > 0 and t > 0. Since L(0) = 0 we have by (14)

ϕγ (t) = E |L(t)|1/γ

t
= t1/αγ E |L(1)|1/γ

t
.

If α = 2 then E |L(1)|1/γ < ∞ and lim
t→∞ ϕ1/2(t) = σ 2. Since 0 < σ 2 < ∞, by

Proposition 2, we have γL = 1/2. The remaining follows from Remark 1 (a).

If 0 < α < 2 we have by (15)

E |L(1)|1/γ < ∞ if
1

αγ
< 1

and

E |L(1)|1/γ = ∞ if
1

αγ
> 1.

It follows that lim
t→∞ ϕγ (t) = 0 if γ > 1/α and lim

t→∞ ϕγ (t) = ∞ if γ < 1/α.

From Proposition 1 we have γL = 1/α. Since α < 2 we have E |L(t)|2 = ∞. Thus
σ 2

L (x, t) = DL = ∞. �

Next, we relate the diffusion index with regularly varying functions. We say

that a non-negative function ϕ(·) is ρ-regularly varying at infinity if lim
t→∞

ϕ(t x)

ϕ(t)
=

xρ for all x > 0 and we say that ϕ(·) is slowly varying at infinity if ρ = 0.

Proposition 6. For a Lévy stable process L = Lα,σ let ϕt (x) = P(L(t) > x). Then,

ϕt (·) is slowly varying at infinity if α = 2

and ϕt (·) is
(

− 1

γL

)
− regularly varying at infinity if 0 < α < 2,

being γL = 1
α

, the diffusion index.

Proof. Since L(0) = 0 we have L(t)
D= Sα,σ t1/α . If α = 2 we have S2,σ

√
t =

N (0, 2σ 2t), which has slowly varying tail. If 0 < α < 2 we make use of

the following property of stable symmetric distribution : for Z
D= Sα,β we



Diffusion Index for Lévy Motions 693

have

lim
z→∞ zα P(Z > z) = Cα

βα

2

(cf. (1)). If follows that

lim
z→∞ zα P(L(t) > z) = Cα

σ αt

2

and for x > 0 and s > 0 we have lim
s→∞

ϕt (sx)
ϕt (s) = x−α . By Proposition 5, γL =

1/α. �

3. EXAMPLES

Example 1. Let {X (t) = X, t ≥ 0} where X possesses zero-mean and finite
moments. Then lim

t→∞
E |X |1/γ

t = 0, ∀γ > 0. We have a subdiffusion regime with

γX = DX = 0.

Example 2. Let {Bσ (t) : t ≥ 0} be the Brownian motion with variance σ 2/2.
Since Bσ (·) is the Lévy stable process L1/2,σ we have from Proposition 5 a normal
diffusive regime with

σ 2
Bσ

(x, t) = σ 2, DBσ
= σ 2

2
and γBσ

= 1

2
.

Now, consider the drifted Brownian motion X (t) = Bσ (t) + µ(t), µ �= 0 then
σ 2

X (x, t) = σ 2. For the diffusion constant we have

DX = lim
t→∞

E(X2(t))

2t
= lim

t→∞
σ 2t + µ2t2

2t
= ∞

which indicates a superdiffusion regime caused by the drift. But, if the centered
process in considered we have

X (t) − E(X (t)) = X (t) − µt = Bσ (t)

and γBσ
= 1/2 (normal diffusion).

Example 3. Let {V (t) : t ≥ 0} be the Ornstein-Uhlenbeck given by Langevin
equation

dV (t) = −µV (t)dt + σd B(t) , µ > 0 , σ > 0

V (0) = 0.
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Then V (t) = σ
∫ t

0 e−µ(t−x)d B(s) which is a zero-mean Gaussian process with
covariance function given by

cov(V (t), V (s)) = σ 2

2µ

[
e−µ(t−s) − e−µ(t+s)

]
.

Also, for h > 0

E (V (t + h)|V (t)) = e−µh V (t)

E(V 2(t + h)|V (t)) = e−2µh V 2(t) + σ 2

2µ
(1 − e−2µh).

It follows that

E (V (t + h) − V (t)|V (t)) = −µhV (t) + o(h)

and

E((V (t + h) − V (t))2 |V (t)) = σ 2h + o(h).

Where o(h) → 0 as h → 0. Hence, the infinitesimal coefficients are
µV (x, t) = −µx and σ 2

V (x, t) = σ 2.

From the covariance function we have

DV = lim
t→∞

E(V 2(t))

2t
= σ 2

2µ
lim

t→∞
1

2t
(1 − e−2µt ) = 0.

Alternatively, by a change of time and a rescaling of the state variable of the
Brownian motion we can write

V (t) = e−µt B

(
σ 2

2µ
(e2µt − 1)

)
. (16)

Using the self-similarity property of Brownian motion we have for γ > 0,

E |V (t)|1/γ = e−µt/γ

[
σ 2

2µ
(e2µt − 1)

]1/2γ

E |B(1)|1/γ

and lim
t→∞

E |V (t)|1/γ

t = 0, ∀γ > 0. From (5) we have γV = 0 which indicates a sub-

diffusion regime, as one would expect from representation (16). In fact, one

can show that V (t)
D→ N (0, σ 2/2µ) and by Example 2 we have subdiffusion

(
D→: converge in distribution).



Diffusion Index for Lévy Motions 695

Example 4. Let {B H (t) : t ≥ 0} be the fractional Brownian motion with Hurst
parameter 0 < H < 1, that is, a stochastic process satisfying :

(i) B H (0) = 0 a.s.

(ii) B H (·) is a zero-mean Gaussian process with covariance function given by

cov(B H (t), B H (s)) = σ 2

2
[t2H + s2H − |t − s|2H ] (17)

where σ 2 = var(B H (1)).

For H = 1/2 we have the Brownian motion with variance σ 2 and for 0 <

H < 1 one can verify that B H (·) is a self-similar process with similarity index H
and stationary increments (see, for example, (12)).

Since (B H (t + h), B H (t)) is a bivariate Gaussian with covariance function
(17) we have

E(B H (t + h)|B H (t)) = (t + h)2H + t2H − h2H

2t2H
B H (t)

and

var(B H (t + h)|B H (t)) = σ 2

2
2(t + h)2H − [(t + h)2H + t2H − h2H ]2

2t2H

σ 2

2
.

It follows that

E(B H (t + h) − B H (t)|B H (t) = x) = 1

2t2H
[(t + h)2H − t2H − h2H ]x

and

E{(B H (t + h) − B H (t))2|B H (t) = x} = var(B H (t + h)|B H (t) = x)

+ [E(B H (t + h) − B H (t)|B H (t) = x)]2.

From (1) we have infinitesimal coefficients

µB H (x, t) =




−∞ H <
1

2

0 H = 1

2

2Ht2H−1x H >
1

2
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and

σ 2
B H (x, t) =




∞ H <
1

2

σ 2 H = 1

2

0 H >
1

2
.

For the diffusion constant we use the self-similarity property B H (t)
D= t H B H (1).

It follows that E((B H (1))2) = σ 2, E((B H (t))2) = t2Hσ 2 and

DB H = lim
t→∞

t2Hσ 2

2t
=




0 H <
1

2
σ 2

2
H = 1

2

+∞ H >
1

2
.

The diffusion index will provide a refinement of these results. For γ > 0 we have
E(|B H (1)|1/γ ) < ∞. Since B H (1) is Gaussian and

E(|B H (t)|1/γ ) = E{t H/γ |B H (1)|1/γ }.

Thus

0 < lim
t→∞

(|B H (t)|1/γ )

t
< ∞ if and only H = γ.

By Corollary 1 we have γB H = H . Clearly, if H = 1/2 we have normal diffusion
and H < 1/2 ( H > 1/2 ) represents subdiffusion (superdiffusion).

4. INFERENCE

As we have seen, the Lévy stable processes Lα,σ have diffusion index γL ≥
1/2 and Proposition 6 suggests that the tails of a stable law behave as x−α . For 0 <

α < 2 this indicates a heavy-tail. On the other hand, extreme value distributions
have been used to model heavy-tailed phenomena. The extreme value distributions
(maximum) can be summarized by

Gβ(x) = exp{−(1 + βx)−1/β} , 1 + βx > 0,

where β is the tail parameter and corresponding to β > 0 we have heavy-tailed
distributions (Fréchet distributions).
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Let Y1, Y2, · · · be i.i.d. random variables with a common distribution F . From
the extreme value theory if 1 − F is (−1/β)-regularly varying at infinity for some
β > 0 then there exist constants cn > 0 and dn such that

P(
max{Y1, · · · , Yn} − dn

cn
≤ x)

n→ Gβ(x).

This suggests that the extreme order statistics have a role to play. And the approach
for estimating the tail index β leads to an estimate of the stability index α as well.
We will make use of the classical Hills’s estimator (6): let Y(1) ≤ Y(2) ≤ . . . ≤ Y(n)

denote the order statistics of the sample (Y1, Y2, . . . , Yn); let k = kn with kn/n
n→

0, then

β̂n = 1

k

n∑
j=n−k

log
Y( j)

Y (n − k)

p−→ β

(
p→ : convergence in probability).

Proposition 7. For a Lévy stable process L = Lα,σ with 0 < α < 2 the diffusion
index γL can be estimated by

1

k

n∑
j=n−k

log
Y( j)

Y(n−k)

p−→ γL (18)

where Y j = L( j) − L( j − 1) and Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) are the corresponding
order statistics.

Proof. Since Lα,σ has stationary and independent increments, L(0) = 0 and

L(1)
D= Sα,σ we have

L(1) − L(0), L(2) − L(1), . . . , L(n) − L(n − 1)

are i.i.d. random variables with a common distribution Sα,σ . From Proposition 6
the tail of Sα,σ is (−1/γL )-regularly varying at infinity and (18) follows. �
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